Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC
نویسندگان
چکیده
Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.
منابع مشابه
A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes
UNLABELLED Erythrocyte invasion by malaria parasites is essential for blood-stage development and an important determinant of host range. In Plasmodium vivax, the interaction between the Duffy binding protein (DBP) and its cognate receptor, the Duffy antigen receptor for chemokines (DARC), on human erythrocytes is central to blood-stage infection. Contrary to this established pathway of invasio...
متن کاملPlasmodium simium, a Plasmodium vivax-Related Malaria Parasite: Genetic Variability of Duffy Binding Protein II and the Duffy Antigen/Receptor for Chemokines
Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocy...
متن کاملStructural Analysis of the Synthetic Duffy Binding Protein (DBP) Antigen DEKnull Relevant for Plasmodium vivax Malaria Vaccine Design
The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We d...
متن کاملTowards a Vaccine against Plasmodium vivax Malaria
Perspectives T here is little doubt that effective interventions against Plasmodium vivax are needed. An estimated 2.6 billion people live in areas endemic for P. vivax [1], and P. vivax carries a substantial burden of disease with 50–70 million clinical episodes each year [2]. Effective malaria vaccines could act by preventing initial liver-stage infection and/or blood-stage replication of par...
متن کاملDetermination of the Molecular Basis for a Limited Dimorphism, N417K, in the Plasmodium vivax Duffy-Binding Protein
Invasion of human red blood cells by Plasmodium merozoites is vital for replication and survival of the parasite and, as such, is an attractive target for therapeutic intervention. Merozoite invasion is mediated by specific interactions between parasite ligands and host erythrocyte receptors. The P. vivax Duffy-binding protein (PvDBP) is heavily dependent on the interaction with the human Duffy...
متن کامل